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Figure 1: Left to right: frames from the input video sequence; ortho-images that are automatically assembled out of a large number of
different input frames; final model that is modeled manually in a 3D modeling package by using the ortho-images as blueprints.

Abstract

A semi-automatic approach is presented that enables the genera-
tion of a high-quality 3D model of a static object from an image
sequence that was taken by a moving, uncalibrated consumer cam-
era. A bounding box is placed around the object, and orthographic
projections onto the sides of the bounding box are automatically
generated out of the image sequence. These ortho-images can be
imported as background maps in the orthographic views (e.g., the
top, side, and front view) of any modeling package. Modelers
can now use these ortho-images to guide their modeling by trac-
ing the shape of the object over the ortho-images. This greatly im-
proves the accuracy and efficiency of the manual modeling process.
An additional advantage over existing semi-automatic systems is
that modelers can use the modeling package that they are trained
in and can thereby increase their productivity by applying the ad-
vanced modeling features the package offers. The results presented
show that accurate 3D models can even be generated for translucent
or specular surfaces, and the approach is therefore still applicable
in cases where today’s fully automatic image-based approaches or
laser scanners would fail.
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1 Introduction

3D modelers are often given the task of generating a 3D model of
a real object, e.g., during the production of video games or special
effects in movies.

A common approach is to use a laser scanner or structured light
scanner. These scanners usually give very good surface de-
tails [Levoy et al. 2000], but they are still quite expensive and have
problems with reflective surfaces, translucent surfaces, dark sur-
faces that do not reflect the laser, or colorful surfaces that make it
hard to analyze the projected light patterns.

A less expensive approach is to take a series of images or a video
of the real object and try to recover the 3D information out of these
images. This approach is accessible to everybody with a consumer
camera. In recent years, systems have been developed that can au-
tomatically generate a 3D model from a captured image sequence.
In [Niem 1999], the extrinsic and intrinsic camera parameters as-
sociated with each input image are recovered with a calibration
ring, which is placed around the object. The 3D model is then es-
timated by a shape-from-silhouette approach. However, the images
have to be taken in front of a blue-screen because otherwise the
user would have to generate the silhouettes for each image man-
ually. Structure-from-motion approaches, such as [Pollefeys et al.
2004], do not need a calibration object or blue-screen. First, fea-
ture points are tracked over the image sequence. By analyzing the
feature tracks, structure-from-motion approaches can estimate the
camera parameters for each input image and the 3D coordinates of
each feature track. This step is called camera tracking, and several
commercial and free [Thormählen 2006] camera trackers are avail-
able. After camera tracking, the 3D model is a sparse point cloud
and Pollefeys et al. applied a multi-view stereo algorithm to recover
a dense 3D surface model. However, multi-view stereo approaches
are vulnerable to a lack of discernible features on the real surface,
ambiguities in the image data, and they have problems with specu-
lar and translucent surfaces. Furthermore, automatically generated
3D models often look either noisy or overly smoothed.

Semi-automatic systems can overcome these difficulties through
manual intervention. In Photomodeler [Eos Systems 2005] or the
Facade system [Taylor et al. 1996], for example, the user has to
manually mark corresponding points in every image of the se-



quence, which is very time-consuming. A quicker option is the
Videotrace system [van den Hengel et al. 2007], which makes use
of automatic camera tracking information. With Videotrace it is
therefore often sufficient to sketch the shape of the object surface to
be modeled only over one frame of the image sequence. A disad-
vantage of Videotrace, however, is that 3D modelers have to model
the object in the Videotrace system with its limited tools and can
no longer use their modeling package of choice. This slows down
productivity because 3D modelers are usually very skilled in one
specific modeling package and familiar with the tools and features
offered by that package.

In this paper, we present a novel approach that allows fast inter-
active generation of 3D models from image sequences and allows
modelers to stick to their modeling package of choice. Figure 2
shows an overview of the workflow of the novel approach. First, the
camera parameters for each input image are estimated by automatic
camera tracking. Afterwards, approaches from image-based render-
ing are used to generate an orthographic projection on a bounding
box that is placed around the object. These ortho-images can be im-
ported as background maps in the orthographic views of any model-
ing package (e.g., the top, side, and front view). Now, modelers can
use the ortho-images to guide their modeling with the familiar tools
of their modeling package. Thereby, they can use all the advanced
features that the modeling package has to offer, such as spline mod-
eling or subdivision methods. Because of the orthographic projec-
tion, the 3D information is directly given by the 2D user interac-
tions in the orthographic views. This greatly improves the accuracy
and efficiency of the manual modeling process. The approach is
capable of handling not only diffuse surfaces but even translucent
or specular surfaces and is therefore still applicable where today’s
laser scanners or fully automatic image-based approaches would
generate inaccurate results.
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Figure 2: Workflow overview

As can be seen in Fig. 2, the two new modules in the workflow are
the placement of the bounding box and the ortho-image generation.
These two modules are described in the following two sections.
Section 4 presents results, and the paper ends with a conclusion.

2 Placement of the Bounding Box

The bounding box, which will be later used for ortho-image gener-
ation, can usually not be chosen arbitrarily. In cases where there are
symmetries in the object, a correct bounding box can save a lot of
work in the modeling step. Therefore, the bounding box is placed
interactively using the camera parameters, which were estimated in
the previous automatic camera tracking step.
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Figure 3: Interactive placement of a bounding box with 2D anchor
points in the camera image and additional 3D constraints. In this
example, two 3D constraints are given, namely that the bounding
box should be located on top of the ground plane and that the sym-
metry plane should cut exactly through the middle of the bounding
box.

As shown in Fig. 3, the bounding box is represented by 3D vertices
Vi on its 6 surfaces. Similar to the approach described in [Gib-
son et al. 2003], the position, orientation, and anisotropic size of
the bounding box is estimated by a non-linear optimization algo-
rithm, which attempts to match user-specified 2D anchors aij for
the projection of a vertex Vi in the camera view j. The user can
drag the 2D anchors with the mouse over the image plane while the
optimization is performed at interactive speed. However, for this
application, the approach by Gibson et al. must be extended so that
additional 3D constraints can be optimized. These 3D constraints
can, for instance, enforce that a vertex Vi lies on a ground plane
and/or on one or multiple symmetry planes.

If the user has specified N 2D anchors and M 3D constraints, the
non-linear objective function is given by

min
H

∑
N

d(aij , Pj HVi) + λ
∑
M

D(Si, HVi) , (1)

whereby the 2D anchors aij = (x, y, 1)> and 3D vertices Vi =
(X, Y, Z, 1)> are given in homogeneous coordinates; the 4 × 4
matrix H describes the anisotropic similarity transformation, which
transforms the 3D vertices Vi from the local coordinate system of
the bounding box to the global coordinate system; Pj is the 3 × 4
camera matrix of camera view j; λ is the weighting factor of the 3D
constraints; and d(. . .) and D(. . .) are the Euclidean distances of
homogeneous points in 2D and 3D, respectively. The 3D points Si

are given by the 3D constraints, e.g., Si can be the closest perpen-
dicular point to Vi on a ground plane or on a symmetry plane, as
shown in Fig. 3. The anisotropic similarity transformation H has
9 parameters, 3 each for position, rotation, and anisotropic scal-
ing. These parameters are optimized in real-time by a Levenberg-
Marquardt optimizer, which minimizes Eq. (1).

Alternatively, the user could select points that belong to the object
of interest out of the 3D point cloud, which was generated in the au-
tomatic camera tracking step. An optimization algorithm could then
automatically calculate the minimal bounding box for the selected
3D points under the additional 3D constraints. However, our exper-
iments showed that the presented method of interactively moving
2D anchors is equally fast and more robust in practice, especially
in cases where there are no or few 3D points on some parts of the
objects.



3 Ortho-Image Generation

Once the bounding box is defined, an ortho-image is generated for
each of the six sides of the bounding box with techniques from
image-based rendering [Shum and Kang 2000]. The term ’ortho-
image’ or ’ortho-photo’ is often used in photogrammetry literature,
e.g., [Habib et al. 2007; Karras et al. 2007], where ortho-images are
especially useful as texture maps for 3D terrain.

3.1 Ortho-images without geometry

If many camera views are available, ortho-images can be rendered
without the knowledge of the object’s 3D geometry. This is es-
pecially useful for transparent or translucent objects, where it is
difficult to estimate the 3D geometry from the image sequence.
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Figure 4: Generation of an ortho-image without knowledge of the
true 3D geometry.

To determine the color intensity for a pixel of the ortho-image, the
orthogonal ray through that pixel is calculated (see Fig. 4). Then,
for each camera view j, the angle γCj between the orthogonal ray
and the ray from the camera center Cj to the pixel of the ortho-
image is calculated. The camera view corresponding to the small-
est of these angels, i.e. min {γCj}, is used to determine the color
intensity for that pixel. As can be seen in Fig. 4, a large min {γCj}
can cause an incorrect color intensity. Therefore, pixels are pro-
cessed only if min {γCj} < τ . We set τ to 2◦ in our experiments.

3.2 Ortho-images with approximate geometry

If less camera views are available, the smallest angle, min {γCj},
for a pixel is often larger than the threshold τ . However, if the ap-
proximate geometry of the object is known, the correct color inten-
sity for that pixel can be retrieved. As before, the camera view with
the smallest angle is selected, but now, as illustrated in Fig. 5, the
color intensity of the pixel is determined by projecting a ray from
the camera center Cj to the point where the approximate surface
reconstruction and the orthogonal ray intersect.
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Figure 5: Generation of an ortho-image with knowledge of the ap-
proximate 3D geometry.

In general, the approximate surface reconstruction is not known
and must be estimated from the image sequence. The following

describes how the graph-cut approach for multi-view stereo in [Vo-
giatzis et al. 2005] is adapted and extended.

First, appropriate camera views must be selected. A large paral-
lax between the camera views improves the accuracy of the stereo
algorithm. On the other hand, a large parallax causes more occlu-
sions and more perspective distortions between the images, which
makes matching of image content harder. Out of all available cam-
era views, a subset of views is selected for which the entire cur-
rently generated ortho-image lies within their viewing frustum, and
the angle between the viewing direction and the surface normal of
the ortho-image is less than α = 30◦. Out of this subset, those four
camera views that have a maximal parallax between themselves are
chosen for stereo matching. By selecting only very few camera
views, we speed up the depth computation, and a larger number of
views does not usually improve the result significantly.

The space of the bounding box is quantized into voxels on a reg-
ular grid. Typically, a total of 128 × 128 × 512 voxels are used,
whereby 512 voxels are used in the normal direction of the currently
generated ortho-image. For each of the voxels, a photo-consistency
score is calculated with a window size of 7 × 7 pixels. The win-
dow positions in the four selected camera images are determined by
projecting the center of the voxel into the four camera views.
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Figure 6: Generation of a 3D surface reconstruction using a
graph-cut approach for multi-view stereo

A graph is built, whereby for each voxel, a node Nx,y,z is generated
that is connected by six edges to its six direct neighbor nodes in the
voxel grid. The edge weights are chosen according to the photo-
consistency score, whereby a high photo-consistency corresponds
to a low edge weight (see [Vogiatzis et al. 2005] for details).

As shown in Fig. 6, all nodes Nx,y,z=1 are connected to the source,
and all nodes Nx,y,z=512 are connected to the sink. Now, a globally
optimal solution for the 3D object surface can be found in polyno-
mial computing time using graph-cuts. The graph-cut algorithm
finds a cut through the edges of the graph so that the nodes con-
nected to the source are separated from those connected to the sink
and the sum of cut edge weights is minimal. Therefore, the graph-
cut solution corresponds to the 3D surface reconstruction with the
highest photo-consistency under a smoothness constraint. To con-
trol the smoothness of the 3D surface reconstruction, we can multi-
ply all edge weights in the normal direction of the ortho-image by a
factor. A larger factor results in a smoother 3D surface reconstruc-
tion because it makes cuts through edges in normal direction more
costly.

The 3D point cloud that is produced by the camera tracking step
(see Fig. 2) is generated from 2D feature points that were tracked
consistently over multiple images of the sequence. It is important to
incorporate this reliable 3D information given by the 3D point cloud
into the graph-cut surface estimation process. Only those 3D points
are used that are visible in the current ortho-image. Each node
Nx=px,y=py,z=pz in the graph that has a 3D point (px, py, pz)

> in
its voxel volume is connected to the source. The neighboring node
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Figure 7: Reconstruction of a Canon EOS 400D camera: a) frames from the input video sequence; b) generated ortho-images for the right,
front, left, back, and top view; c) color-coded index of the video frame that is used to generate that pixel of the front view; d) grayscale-coded
depth map for the left view; e) final 3D model that is modeled manually in a 3D modeling package by using the ortho-images as blueprints1.

Nx=px,y=py,z=pz+1 in the normal direction of the ortho-image is
connected to the sink. Additionally, all nodes Nx=px,y=py,z<pz

are connected to the source, and all nodes Nx=px,y=py,z>pz+1 are
connected to the sink, and their edge weights are set to a very
high value. This enforces that the graph-cut solution must cut
through the edge between the two nodes Nx=px,y=py,z=pz and
Nx=px,y=py,z=pz+1 and thereby must fulfill the additional con-
straint given by the position of the 3D point.

4 Results

The presented approach has been applied to a variety of image se-
quences with different challenges. In the following, three examples
are presented. These examples are also shown in the video provided
with this paper.

The first example, the reconstruction of a Canon EOS 400D cam-
era, is shown in Fig. 7. The input sequence is taken with a consumer
HDV video camera and has a total length of 693 frames. The cam-
era parameters and 3D point cloud are estimated with the ’Voodoo
Camera Tracker’ software [Thormählen 2006]. A few 3D points
that lie on the surface of the depicted book are selected, and a plane
is estimated through the selected 3D points. In an analogous man-
ner, another plane is estimated that represents the back plane of the
Canon EOS 400D camera. Now, the bounding box is placed inter-
actively as described in section 2, whereby the two estimated planes
are applied as 3D constraints for the location of the bounding box.
Since the HDV video camera is moving only once around and over
the object, there are not enough camera views available to apply the
method of subsection 3.1. Instead, the method of subsection 3.2 is
used to estimate an approximate surface reconstruction (an example
of a depth map can be seen in Fig. 7), and the ortho-images for the
right, back, left, front, and top view are automatically generated.
The ortho-images can be easily imported as background maps into
any modeling package of choice (see Fig. 8). Because the model-
ers can use the ortho-images with the modeling package taht they
are trained in, the manual creation of a high-quality 3D model is
fast, efficient, and convenient. A comparison with a laser scan in
Fig. 9 shows that the created 3D model of the Canon EOS 400D
camera is accurate. The laser scan and the generated 3D model can
be aligned with a RMSE of 1.287 mm. Upon close inspection of the

1Special thanks to Benjamin Waschk ( http://www.janundben.de )

ortho-images in Fig. 7, it is possible to see that each is assembled
out of a large number of input images and that there are a few image
parts where wrong intensity values are assigned to pixels because
of inaccurate estimation of 3D geometry. A few wrongly assigned
intensity values do not usually affect the applicability of the ortho-
images as blueprints for modeling. 3D modelers can usually level
out these small errors by applying their high-level knowledge about
how that object should appear.

Figure 8: The ortho-images can be imported as background maps
in the orthographic views of any modeling package, here Autodesk
Maya.

Figure 9: Left to right: laser scan; final 3D model that is generated
manually from the ortho-images; comparison of the laser scan (red
points) with the final 3D model (blue points).

As a second example, the reconstruction of a Holden Astra Twin-
Top car is presented in Fig. 1. The input sequence is again taken
with a consumer HDV video camera and has a total length of 597
frames. This sequence is quite different because the camera is ac-
tually not moving. The camera is mounted on a tripod and the car
is moving on a large turntable. However, if the background of the



scene is ignored, the geometric relationship between an object on a
turntable and a static camera can also be interpreted as if the object
is static and the camera is orbiting around the object. Therefore, the
presented approach can be applied in the same way as in the previ-
ous example. The sequence is especially challenging because of the
specular paintwork and the lack of discernible features on the body
of the car. This makes it extremely hard for multi-view stereo algo-
rithms to estimate the 3D geometry correctly. Nevertheless, the ap-
proximate geometry, which is generated with the graph-cut method
of subsection 3.2, is good enough to produce the ortho-images as
shown in Fig. 1.

e)

a)

b) d)c)

Figure 10: Reconstructing a wine glass from an image sequence:
a) original image sequence; b) ortho-image of the wine glass;
c) color-coded index of the image that is used to generate that pixel
of the ortho-image; d) modeling of the glass using the ortho-image
and NURBS tools in Autodesk 3ds Max; e) rendering of the recon-
structed wine glass into the original image sequence.

The final example is the 3D reconstruction of a transparent wine
glass. The input is now a sequence of 140 still images taken with
a digital SLR camera. Because the glass has rotational symmetry,
a 3D reconstruction can be generated from a single ortho-image.
Without knowledge of approximate 3D geometry, the 140 cam-
era views are sufficiently dense to generate this single ortho-image
by applying the method described in section 3.1. As exhibited in
Fig. 10, the ortho-image has artifacts in the center of the glass be-
cause objects and light sources from the environment are reflected
differently into the camera images. However, the contour of the
wine glass, which is important in the 3D modeling step, is almost
perfectly preserved. After loading the ortho-image into a 3D mod-
eling package, it takes less than a minute to generate a convincing
3D reconstruction.

5 Discussion and Conclusion

Obviously, it is possible in some cases to skip the first three work-
flow steps described in this paper because an ortho-image can also
be approximated by taking a single image of the object with a very
long tele lens. However, especially for large objects, this direct
approach is not easy to apply. Between the camera and the car, a
distance of 4.5 m · cot 2◦ = 128.86 m is needed to generate ortho-
images for a car with a side length of 4.5 meters and with a max-
imal error for the direction of the orthogonal ray of 2 degrees. In
practice, it would also take some effort to place the camera so that

neighboring ortho-images (e.g. side and front views) are taken from
exactly perpendicular directions. Clearly, these difficulties can be
avoided by using the workflow presented in this paper.

The presented results show that the novel semi-automatic approach
described in this paper can generate high-quality and accurate 3D
models from image sequences. The workflow is especially easy
to apply because of its straightforward interaction with existing
modeling packages. In comparison with state-of-the-art, fully auto-
matic, image-based approaches, the presented approach allows 3D
reconstruction in more situations (e.g., specular or transparent ob-
jects) and produces a reconstruction of higher quality. This higher
quality is achieved at the expense of more manual intervention.
However, this manual intervention is kept to a minimum and the
presented approach comprises more automatic steps than other ex-
isting semi-automatic systems.
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