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Abstract

Effective digital content creation tools must be both efficient in the
interactions they provide but also allow full user control. There may
be occasions, when art direction requires changes that contradict
physical laws. In particular, it is known that physical correctness of
reflections for the human observer is hard to assess. For many cen-
turies, traditional artists have exploited this fact to depict reflections
that lie outside the realm of physical possibility. However, a sys-
tem that gives explicit control of this effect to digital artists has not
yet been described. This paper introduces a system that transforms
physically correct reflections into art-directed reflections, as spec-
ified by reflection constraints. The system introduces a taxonomy
of reflection editing operations, using an intuitive user interface,
that works directly on the reflecting surfaces with real-time visual
feedback using a GPU. A user study shows how such a system can
allow users to quickly manipulate reflections according to an art
direction task.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Modeling packages; I.3.6 [Com-
puter Graphics]: Methodology and Techniques—Interaction tech-
niques

Keywords: post-production, intuitive editing, lighting design, per-
ception, non-photorealistc rendering, graphics hardware

1 Introduction

The composition of traditional, as well as computer-generated im-
ages can be understood as an optimization process, wherein a num-
ber of artistic goals should be fulfilled within a number of phys-
ical constraints. When all physical constraints are met, photo-
realistic images can be expected, but some artistic goals might not
be achieved. On the other hand, fulfilling all artistic goals might
lead to images with inadequate realism. For many centuries the
limitations of human perception have allowed skilled artists to si-
multaneously achieve both goals.

One famous example from traditional art is the painting “The
Rokeby Venus” by Diego Velázquez, shown in Fig. 1: The reflec-
tion of the face in the mirror is physically incorrect, as was proven
by photographic reproduction [Braham 1976]. Despite this, a pleas-
ant and naturalistic image was achieved, as human observers have
difficulties in assessing the physical correctness of reflections on
complex surfaces [Fleming et al. 2003; Khan et al. 2006; Rama-
narayanan et al. 2007].
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Although human difficulties with the assessment of reflections are
known in the field of computer graphics, very little research has
been done on how to define and manipulate reflections outside
physical bounds. Non-physical reflections are difficult to achieve
with today’s tools. Manual techniques, like 2D image warping,
compositing approaches, reflection map editing, or normal map
editing, are tedious to apply and fail to properly capture perspec-
tive, complex geometry, animation sequences, local edits, partially
diffuse materials, or occlusions.

Figure 1: “The Rokeby Venus” (before 1651; detail) by Diego
Velázquez (1599–1660) uses reflections beyond physical laws.

In this paper, a system for interactive reflection editing is presented,
which allows the user to escape the boundaries of physically cor-
rect rendering, without any such limitations. The system takes
as input a virtual 3D scene containing reflecting objects, together
with a number of user-defined constraints, which define the edited
reflection directions (e.g., Velázquez used one such constraint in
his painting: “The mirror should reflect the face, not the body”).
The output of our system is an image in which all constraints are
fulfilled and the change in reflection direction is smooth. The sys-
tem estimates the best (least squares) interpolated edited reflection
direction for each pixel. The system runs in real-time on a GPU
in HD resolution, is independent of the underlying reflection ren-
dering method (ray-tracing or reflection mapping), is independent
of meshing or parameterization, and works without pre-processing.
It can handle animated meshes and allows more general specular
light transport, like glossy reflections and refractions. Furthermore,
the system does not require any user parameters besides the desired
constraints. Our user study shows that our system allows not only
professional designers but also novices to design complex reflec-
tions in minutes. With today’s tools, this is difficult for even an
experienced designer to achieve.

2 Previous Work

Appearance editing Several methods have been proposed to ma-
nipulate lighting effects in a rendered 3D scene, as an alternative to
manually setting raw lighting parameters. Most of them use sketch-
ing or painting interfaces that allow users to directly draw lighting
effects [Schoeneman et al. 1993; Poulin et al. 1997; Pellacini et al.
2007; Todo et al. 2007; Obert et al. 2008]. While these methods
are effective in controlling (global) illumination and low-frequency
BRDFs, the view-dependent, high-frequency complexity of reflec-
tions and refractions is better addressed by our approach, which de-
forms the existing reflections and refractions. Light painting tech-
niques become prohibitively work-intensive, if the view-dependent
light pattern (in our case a reflected object) is complex. Anjyo et



al. [2003] proposed the interactive control of highlight shapes, but
this technique limited to the area of cartoon animations. Auto-
mated lighting design systems have also been proposed [Shacked
and Lischinski 2001; Rusinkiewicz et al. 2006]. In theory, reflec-
tions outside physical bounds could also be realized using existing
BRDF [Colbert et al. 2006] or BTF [Kautz et al. 2007] editing
approaches. However, manually specifying an artist-directed, op-
timal and smooth per-pixel mirror direction (as resulting from our
approach) would be a prohibitively laborious task.

Perception of reflections Reflections of real-world illumination
are important for human perception of material appearance and
shape, however, it is difficult for human observers to assess illumi-
nation consistencies [Fleming et al. 2003; Ostrovsky et al. 2005]
and the correctness of a given reflection [Ramanarayanan et al.
2007]. This fact was exploited by Khan et al. [2006], who used
parts of a photograph to approximate glossy environment maps.
The human difficulties in understanding reflection patterns can be
generalized to caustics [Gutierrez et al. 2008]. Tosun et al. [2007]
use reflection lines to optimize surfaces in an offline process.

Intuitive deformation Editing reflections can be understood as
deforming the field of reflection directions on a surface. Many tech-
niques for the intuitive deformation of images [Igarashi et al. 2005]
or surfaces [Sorkine and Alexa 2007] now exist. Our approach
adapts a Moving Least Squares cost function, which has previously
been successfully used in the domain of shape deformation [Müller
et al. 2005; Schaefer et al. 2006].

Inhouse solutions Although unpublished, it can be assumed that
some production houses have in-house tools to manipulate reflec-
tions. Such manipulations can be easily added to a professional
rendering pipeline, e.g., by applying a global linear transformation
within a programmable shader [Kopra 2007]. However, we are not
aware of any specific software that explicitly addresses reflections
or is similar to our interactive user-constraint-driven system, which
allows smoothly blended, local, non-linear reflection edits.

3 Reflection Editing

According to the law of reflection, the angle of the incident ray i
is equal to the angle of the reflected ray r for a perfectly mirroring
surface (cf. Fig. 2). Given the surface normal n, the reflected ray is
given by

r = i− 2 (i> n)n , (1)

where i, n, and r are 3-vectors (x, y, z)> normalized to 1.

In this paper, we present a real-time system for interactive reflection
editing, which allows the user to violate the law of reflection by
specifying a constraint that redirects the reflected ray r in another
direction, given by the edited ray e. The user can specify this edited
ray with an intuitive user interface that will be described in Sec-
tion 4.

Refl ected object

Refl ecti ve object

Viewer

Figure 2: Following the law of reflection, an incident ray i is re-
flected in direction r at normal n. With reflection editing, r is
redirected to the edited ray e, to fulfill a user-defined constraint,
e.g., to always reflect the left dragon.

4 User Interactions

With a given 3D scene, the user can start to edit reflections by
specifying a region of interest and using a mouse to put several
constraints in the region (Fig. 3-a). The user can then move, rotate
and deform the reflection in the region by dragging the constraints
(Fig. 3-b and c) and inspecting the resulting reflections in real-time.

Figure 3: (a) Specifying the region of interest on the sphere (blue
center and white boundary) and a constraint (red point). (b) Mov-
ing the constraint to translate the reflection. (c) Putting in one more
constraint and deforming the reflection.

Constraints Each constraint has two handles: a red one on the
surface of the reflective object and a green one located on the re-
flected object (red and green points in Fig. 4-a). Both handles can
be moved to edit the reflection. The red handle drags a reflection
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Figure 4: (a) A constraint is placed on a mirror, which reflects only
a small part of the dragon. The constraint visualizes how the green
point is reflected at the position of the red point. (b) Moving the
red handle (yellow arrow) on the mirror, drags down the reflection.
(c) Dragging the green handle (yellow arrow), changes the position
that is reflected at the red point.

to a new location, e.g., in Fig. 4-b moving the red handle down on
the reflecting mirror also moves the reflection of the dragon down.
Moving the green handle from the reflected location to a differ-
ent location makes this the new reflected location, e.g., in Fig. 4-c
moving the dragon’s head to the center of the mirror. Practice has
shown that manipulation of the red handle is useful for subtle edits,
whereas manipulating the green handle results in more substantial
changes.

Regions To limit the influence of the edit operation within the
scene, several tools are used for specifying the region of interest.
Without a region, changing a reflection would alter the entire scene.
Creating a region allows multiple independent and well localized
edits within one scene. Once created, regions can also be moved
by dragging their blue handle. The user can choose between three
types of regions: Euclidean, geodesic, and free-form.

Euclidean regions are defined by a (blue) center and a radius in
Euclidean space (Fig. 5-a). These are easy to use and work on
multiple or disconnected objects. Geodesic regions use a surface
location and radius, which is measured over the surface (Fig. 5-
b). These are more intuitive if the object has a complex shape.
Free-form regions are sketched on the surface (Fig. 5-c) and allow
any shape to be achieved but these have to be manually defined by
a user. These are most suited to expert users who want to work
on small details. All regions have smooth-stepped borders with a



Figure 5: Regions on a spiral object: Euclidean regions (a) influ-
ence the upper part, which can be avoided by using geodesic (b),
or free-form regions (c).

user-defined width. Edited reflections in each region are smoothly
merged with non-edited reflections. All constraints inside a region
influence the solution for the entire region. We define a constraint
as inside a region, when the region’s influence at the constraint lo-
cation is nonzero. Constraints outside all regions have no influence.

View control When the user changes the viewpoint, the con-
straints no longer correspond to the original reflections because re-
flections are view-dependent. Nevertheless, a reflection constraint,
created in its generating view, can be manipulated from any other
arbitrary current view. There are two options to help the user
manipulate the reflections in a consistent manner. When the user
selects a constraint and presses the “return to view” button, the sys-
tem reverts to the generating viewpoint where the constraint was
created. The alternative option is to apply the “freeze” button and
make the reflections temporarily view-independent: while chang-
ing the viewpoint, the reflection does not move but freezes on the
surface. This allows the user to edit the reflection as it is visible
from the generating viewpoint from another arbitrary view. This
feature can be very useful in some situations, e.g., if a handle is
occluded in the generating view.

Animation To simplify the handling of animated objects and de-
forming surfaces, we optionally made the reflecting and reflected
position, as well as the region positions, relative to the (time-
varying) surface. If the surface is deformed or the object is moving,
the corresponding item naturally follows the object. This is useful
for preserving a desired appearance on moving surfaces, and can
also be used for special effects, where a reflection “tracks” a moving
object. Additionally, a constraint can be keyframed over time, or
can be dependent on any other scene parameter, such as the current
viewpoint.

5 Interpolation Algorithm

If the user specifies multiple constraints, a smooth field of edited
rays that interpolates between the user-defined constraints is sought,
which can be found by a Moving Least Squares approach. Let N
be the number of given constraints, where each is specified for the
location pn on the reflective surface, with n = 1, . . . , N. For all lo-
cations pn, the user-defined constraints define the original reflected
rays rn and the edited rays en. To find the interpolation at the in-
termediate positions q, we determine the best 3× 3 rotation matrix
R(q) that minimizes

arg min
R(q)

N

∑
n=1

wn(R(q) rn − en)2 (2)

with
wn =

1
d(pn , q)2 . (3)

Depending on the geometric complexity of the reflecting object,
either the Euclidean or geodesic distance can be used as a dis-
tance metric d(. . . ), as described in Section 6.2. Other weighting
schemes could be used as well, however, it is important that the

weighting wn goes to infinity when the distance d approaches zero.
This is required to make the reflection interpolating (instead of ap-
proximating), because only the local constraint is in effect when the
distance is zero. We found that this property is essential because it
guarantees that our edits accurately show the reflection of the green
handle (the reflected location) at the red handle (the reflecting posi-
tion).

Differentiating Eq. 2 with respect to the elements of R and setting
the derivatives to zero yields the optimal solution

R′(q) =

(
N

∑
n=1

wnrnr>n

)−1 N

∑
n=1

wnenr>n . (4)

This solution does not enforce that R′ is a rotation matrix, however,
the rotation matrix R can be obtained by an ortho-normalization
step. Ortho-normalization ortho(. . . ) is achieved by polar decom-
position of R′ = R S into a rotational part R and a symmetric part S.
A fast algorithm can be found in [Horn 1987]. Because the first part
of Eq. 4 is always symmetric, R can be determined by

R(q) = ortho

(
N

∑
n=1

wnenr>n

)
. (5)

Consequently, the edited reflection direction for each position q on
the surface is given by

e(q) = R(q) r(q) . (6)

It is worth emphasizing that this solution to R(q) allows for very
intuitive editing, because the user merely specifies the edited ray en
and does not need to define complete rotation matrices at each con-
straint location. The 3 × 3 matrix (enr>n ), used in Eq. 5, can be
interpreted as a degenerated rotation matrix of rank 1. To upgrade
this matrix to a full rotation matrix the user would have to specify
an additional degree of freedom, namely, the amount of rotation
around the edited ray. The ortho-normalization step automatically
fills this degree of freedom by taking the neighboring constraints
into account.

If the viewpoint is changed, the edited reflection direction e(q) must
be recalculated with Eq. 6, because the reflected ray r(q) is depen-
dent on the direction of the incoming ray i(q). However, such a
change in viewpoint does not affect the rotation matrix R(q) be-
cause the constraints are associated with the viewpoint for which
they were specified by the user. This means that the edited reflec-
tions are view-dependent, and therefore behave similarly to phys-
ically correct reflections under changing viewpoints. The rotation
matrix R(q) only needs to be re-calculated when the user changes
existing constraints or specifies additional constraints.

Following Eq. 6, the constraints have an infinite area of influence.
For example, if the user specified a single constraint, all reflection
directions on the surface would be altered with the same rotation
matrix, originating from that single constraint. To limit the area of
influence of constraints and to allow better control over complex
editing operations, the user has the option of specifying a region
of interest. For each surface point q a region of interest defines
a value a(q) in the interval 0.0 to 1.0 (usually this value is 1.0 in
the central area of the region and has a smooth fall off to 0.0 at the
region’s borders). For a smooth transition to the unaltered reflection
direction r(q) at the border of the region, the rotation matrix R from
Eq. 5 is replaced by

Ra(q) = ortho

(
a(q) R(q) +

(
1.0− a(q)

)
r(q)r(q)>

)
. (7)

For the calculation of R (and the resulting Ra) only those con-
straints that fall within the region of interest are considered, i.e.,
a(pn) > 0.0. If no constraint lies in the region of interest, the unal-
tered reflection direction r(q) is used.



Our system allows the user to specify multiple regions of interest
that are mutually independent and can be edited completely on their
own. If multiple regions overlap, their contributions are weighted
according to their specific value of a(q).

6 GPU Implementation

When editing visually complex reflections, high quality rendering
and real-time feedback are necessary. In this section we describe
how this can be achieved with current consumer hardware by stream
processing on the GPU.

6.1 Interpolation

To generate a smooth interpolation field of edited reflection di-
rections, the edited reflection direction e(q) (cf. Eq. 6) must be
calculated for every pixel. This can be done in parallel on the GPU.
First, we render the visible part of the scene into a texture, where
each pixel stores the 3D position and normal that is visible at this
pixel. Second, the weights wn, from Eq. 3, for all N constraints
and all pixels are computed and stored into an N-layer array tex-
ture. While an Euclidean weighting can be computed on-the-fly,
geodesic weights need to be computed for each pixel (as described
in subsection 6.2). Third, all constraints and regions are uploaded
as shader constants to the GPU. The original reflected ray r(q) for
each pixel can be calculated using the given position, normal, and
the current viewer position. Afterwards, we solve for the edited
reflection direction e(q) with Eq. 6. In this process, all computa-
tions are done in parallel and independently for each pixel. A final
step passes the calculated edited reflection direction to the rendering
system to compute a reflection along this direction.

6.2 Geodesic Distance

The geodesic distance can be used instead of Euclidean distances in
Eq. 3. Assuming densely tessellated meshes, we coarsely approx-
imate the continuous geodesic distance using the discrete distance
along triangle edges. Letting p̄n be the mesh vertex closest to the
constraint position pn, we compute the discrete edge distance from
p̄n to every other vertex on the mesh using Dijkstra’s algorithm on
the CPU. Then, on the GPU, we approximate the geodesic distance
d(pn , q) from pn to a surface location q, by interpolating the dis-
tance from the discrete distance at the vertices of the triangle that
contains q. As the location q always corresponds to a screen pixel,
this can be done efficiently, just by drawing the per-vertex discrete
distance field using smooth shading in one pass. Every layer of the
N-layer array texture, which stores the weights, can be calculated
simultaneously. While this approximation works well for dense
meshes, efficient high-quality approximations for general meshes
have been published [Surazhsky et al. 2005].

6.3 Rendering

Editing of reflections is independent of the reflection rendering im-
plementation itself. For high frame rates and interactive feedback,
reflection mapping is used by our system although fast raytracing
could alternatively be employed.

Our system applies a reflection mapping technique similar to the
technique proposed by Heidrich and Seidel [1999], on top of a (pre-
computed) diffuse global illumination. For reflection mapping, the
scene is broken up into individual objects and one cube map is ren-
dered from the center of every object. If the reflection direction
is edited, the altered reflection can simply be read from a different

position in the cube map. The diffuse lighting is unchanged when
the reflection direction is edited.

When the user performs an extreme edit, it is possible that the edited
reflection direction points below the surface. Even in such a case,
since our system will simply reflect the object behind the surface,
the edited reflection is always smooth and there are usually no vis-
ible artifacts, such as discontinuities.

Raytracing is another option for rendering multiple, high quality,
local reflections and refractions. Recent GPU approaches [Zhou
et al. 2008] allow for dynamic scenes at interactive speed, but their
implementation is intricate. While in theory raytracing scales well
with geometric complexity, scenes with several 100k faces have not
been demonstrated to run at the same speed as that granted by ras-
terization based reflection mapping. Raytracing glossy BRDFs is
more exact, but is also much more time-consuming compared to
pre-convolved [Heidrich and Seidel 1999] reflection maps.

7 Results

7.1 Applications

This system can be applied to all computer-generated 3D scenes,
as used nowadays for product visualization, movie and TV produc-
tions, or in computer-generated art. Fig. 9 shows some examples
(please see the video provided with this paper for details of the
process by which the edits were created). As complex geometry
can result in visual masking [Ramanarayanan et al. 2007] our ex-
amples use mostly smooth surfaces to expose the edit quality. Some
examples for complex geometry can be found in the supplemental
video. In Fig. 9-a the motivating example from art was reproduced
(29.1 fps). The planar mirror is simple to handle with a single con-
straint and a single region, allowing an experienced user to com-
fortably perform the edit operation in less than half a minute. The
“Kitchen” scene, Fig. 9-b, is a complex scene with several 100k tri-
angles and multiple reflecting objects. With 3 regions, 4 constraints
and 4 reflecting objects, it still can be edited at 16.8 fps. Fig. 9-c
shows a scene, called “Ring”, which might be used in a movie or
TV production. The example also serves to show that reflection
editing is not limited to mirror-like BRDFs, because it features re-
flections on a glossy metal ring (11.1 fps). The edit operation on the
“Car” hood in Fig. 9-d shows how our method could be applied to
product visualization. Even unclean meshes of complex shape and
topology, such as the car body can be handled (9.4 fps). The video
goes into more detail on how constraints can be applied to moving
or deforming meshes.

Highlight editing Our system provides the means for highlight
editing as a special case. In Fig. 6, a round highlight is stretched
over the side of the car.

Figure 6: Highlight shape editing (2 constraints, 1 region, 10.8 fps).

Decoupling shadows and highlights In physically correct ren-
dering, the location of highlights and shadows are coupled. For
artistic reasons, however, it can be useful to decouple them. In
Fig. 7, the scene is lit by an area light that is reflected inside a collec-
tion of objects. While keeping the shadows in place, our technique
allows the user to move the highlight into a more prominent place,



Figure 7: In this example the highlight was moved to another place.
Starting from the original image, the highlight is moved, to give
it the desired more pronounced look, yet left all the soft shadows
unchanged (1 constraint, 1 region).

Figure 8: Refraction edit (1 constraint, 1 region, 29.1 fps): Starting
from the original (a), a region is defined (b), and a constraint is
manipulated (c) until the desired result is achieved (d).

consistent with the reflection of other objects, but still keeping all
soft shadows in place.

Refractions As an extension to reflection editing, the system can
also be used for interactive refraction editing. The user interface for
refraction editing is similar to that of reflection editing. However,
refraction constraints define a refracting position and direction, but
no refracted position. This is because specifying a point that should
be refracted is not unique: a ray could be edited when either en-
tering or exiting the object. We have therefore reverted to directly
manipulating the exiting refraction direction. From a user’s per-
spective, it is not possible to define which world position should
be refracted where, but dragging the refraction works as expected.
The refracted direction must be specified manually and adjusted
until the desired effect for this particular geometry is achieved. In
Fig. 8 an example of refraction editing is shown (at 27 fps).

7.2 Performance

We measured the performance of our reflection editing technique
on a 2.4 GHz CPU with an NVIDIA GeForce 260 GTX. Please see
Fig. 9 for timings. All our results are rendered at 1280×960, where
reflection editing took less than 100 ms. The most expensive com-
putation is the reflection interpolation, which requires at least one
orthogonalization per pixel: a one-constraint system is solved with
24.5 megapixels / s while 32 constraints still result in 18.5 megapix-
els / s. Moving a geodesic region requires a re-computation of the
geodesic distance field on the CPU, which is done at interactive
speed (e.g., in 139 ms for the 525 k triangle “Lucy” model used in
Fig. 7).

7.3 User Studies

We performed two user studies to evaluate our system. In the first
study the usability of our system was investigated. In the second
study the visual quality of the reflection edits was assessed.

16 subjects, all novice users of our system, participated in the
first study. Three where professional 3D graphics designers, while
the others did not have much experience in 3D modeling or post-
production. On average all users rated their skills in using commer-
cial modeling software 2.75, where a score of 0 is worst and 10 is
best. After a detailed tutorial, which took approximately 5± 2 min,
each subject was given three 3D scenes and corresponding goal
images of the target reflections (Figs. 9-a, 9-b, and 6). The goal
images were designed by the authors in advance. The subjects
were asked to use our system to adjust the reflections in each 3D
scene so that they look similar to the goal image. The partici-
pants were allowed to work on the task until satisfied. Everybody
completed the tasks successfully in a very short time (on average
2:22± 1:01 min:sec, 4:04± 1:44 min:sec, and 2:00± 1:16 min:sec
for the task of Figs. 9-a, 9-b, and 6, respectively). When the users
were asked whether our system was useful for achieving the task of
the session, the result was an average rating of 9.42 for all tasks and
users, where 0 considered worst and 10 best.

We were especially interested in the feedback of the three profes-
sional 3D graphics designers. Initially, we asked them to go through
the same tutorial and tasks as performed by the novice users. Their
reactions were positive: our system seems to be the first one that
enables them to edit reflections quickly and easily. We then asked
if it would be possible for them to achieve the same tasks using
the commercial software that they usually work with. They stated
that this would be difficult, then went on to suggest the following
possibilities:

Multiple passes It is possible to edit reflections by moving, de-
forming or changing the reflected objects using the commercial
software. However, it is still difficult or impossible if the reflected
objects and their reflections are visible in the scene, e.g., the sink
reflected on the pot in Fig. 9-a. As a result, with this method, the de-
signer has to render the scene at least two times: once as an unedited
scene, and the other with edited reflections. The designer then uses
a 2D tool to make a composite of the two images (or sequences) by
introducing an alpha matte.

Texture baking It is possible to bake the rendered reflections as
the texture over the surface and edit it. However, with this method,
it is difficult to change the viewpoint later or manipulate an anima-
tion sequence.

Normal editing Several current commercial products support a
tool to edit surface normals. However, it is difficult and unintuitive
for a designer to predict how the edited surface normals affect the
final rendering result. Moreover, normal editing changes the diffuse
lighting, which should ideally be unaffected.

Through this first user study, we have shown that, after a short
training session, our user interface for editing reflections is easy to
learn as well as intuitive even for novices. The system also solves
the problems pointed out by the professional users of conventional
tools.

In the second study the visual quality of the edited reflections was
evaluated. We presented a total of 9 videos showing a Buddha
statue, where 8 videos contained differently edited reflections and 1
video showed the unedited reflections, to 20 subjects. In the videos
the virtual camera is orbiting around the Buddha statue so that the
reflections can be evaluated from different viewpoints. The subjects
were able to activate slow playback or to stop the video to observe
the edited reflections very carefully. The Buddha model was chosen
because it contains complicated as well as smooth geometry. The
supplemental video shows a few seconds of the 9 videos used in
this study.



Figure 9: Applications: a) In a physically correct rendering the tail of the “Rokeby dragon” is visible in the mirror from the current viewpoint.
After reflection editing the mirror reflects the dragon’s head (1 constraint, 1 region, 29.1 fps). b) “Kitchen” is a complex scene with a large
number of objects and triangles. After reflection editing the sink is displayed at a different position in the large reflective pot (4 constraints, 3
regions, 16.8 fps). c) Editing the reflections on this “Ring” makes the reflected face more visible (2 constraints, 1 region, 11.1 fps). d) A user
changed the tree reflected in the hood of this “Car” to become more visible, also editing the highlights (4 constraints, 2 regions, 9.4 fps).
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Figure 10: Average rating of the perceived physical correctness of
different reflection edits on a Buddha statue (0 is worst and 10 is
best). Video 9 is the original version of the scene with unedited
reflections. The small error bars (dark blue) indicate the standard
deviation of the ratings.

The subjects were asked to find reflections that are physically in-
correct and rate the physical correctness of reflections on a scale
of 0 to 10, where 0 is worst and 10 is best. Fig. 10 compares the
average ratings for each of the 9 videos. As the subjects were aware
that the reflections were edited, they were very eager to find the
slightest errors. Some participants even thought they found errors
in the unedited video, which received an average rating of 8.6 out
of 10. As some of our edited versions received even higher average
scores than the unedited version, it can be concluded that the edited
reflections are usually very hard to detect. Slightly lower average
scores were given for video 4 and 7, which both contain strong
edits in smooth regions on the belly and the head of the Buddha.
This confirms the observations made in literature [Ramanarayanan
et al. 2007] that the physical correctness of reflections is harder
to assess on more complicated geometry, and edits can be more
easily detected on smooth surfaces. When we asked the subjects
what was wrong with the reflection edits they had ranked as low,
most answered that the reflections were at the wrong position or
appeared deformed. Nobody thought that the edited reflections

caused a shape deformation because of the way that the reflections
move when the viewpoint is changed. We expected this result for
the complicated shape of the Buddha statue, however, it must be
stressed that local reflection edits on very regular surfaces, like on a
flat plane or sphere, can easily result in a perceived shape deforma-
tion under changing viewpoints. When we asked the subjects if they
could detect the unedited version of the video out of the 9 possibili-
ties, only 3 out of 20 participants were willing to make a guess, but
all three guessed incorrectly. Finally, we showed all 9 videos simul-
taneously and asked the subjects to compare the unedited with the
edited versions. All subjects were able to identify the performed
reflection edits based on a given textual description. This proves
that the edits were significant enough to alter the appearance of the
original.

Through this second user study, we have shown that the edited re-
flections are usually very hard to detect. Even if, in the case of
strong edits, a careful observer notices that the reflections appear
deformed or are located in the wrong position, the edits do not cause
a perceived surface deformation of the Buddha statue.

The full set-up and analysis of both user studies are detailed in the
supplemental material.

8 Limitations and Future Work

The system does have some limitations that may lead to future
work. Whether an edit is acceptable is highly dependent on the
scene, the camera motion, and the performed edit. Exaggerated ed-
its on smooth surfaces, like on a flat plane or sphere, can readily be
assessed as physically incorrect, and can become noticeable under
changing viewpoints or within animated scenes. However, reflec-
tion edits are very difficult to detect on more complicated surfaces,
as verified by our user study. Our system does not currently prevent
users from creating non-realistic or unpleasant reflections. Conse-
quently, when using our system, the artist must always check the



edits before they can be applied in production. With our real-time
system, the user can easily explore the space of possible solutions
between physically correct rendering and the artistic goals. De-
veloping criteria for acceptable edits would be challenging future
work.

Another limitation occurs if the user specifies too many constraints
in a small region. Because the algorithm tries to fulfill all con-
straints, the generated field of interpolated reflection direction is no
longer smooth and is difficult to control.

Our system does not support the bending of reflection rays, which
means that it is impossible to reflect objects that are occluded.

Using a real-time raytracer as the underlying renderer would allow
to experiment with multiple bounces of reflections, multiple refrac-
tions, or mixtures of them.

Visually distracting flickering can occur if the red handle (reflecting
location) is dragged over a high-frequency surface (e.g., with bump
or displacement maps), because the change in reflection direction
then also occurs with high frequency. However, this distraction is
only encountered while dragging and does not compromise the final
result. Optionally, flickering can be suppressed by using a smooth
version of the geometry.

It has been shown in practice, that careful placement of region bor-
ders, e.g., locating them in areas of high surface curvature, gives
more pleasant results. Automatic or guided placement of regions to
make edits less objectionable is a possible avenue of future work.

In future, it would be possible to generalize the idea of local
constraint-based editing beyond physical laws also to other phe-
nomena, such as soft-shadow penumbrae or caustics.

9 Conclusion

This paper introduces a system for reflection editing, which will
formally bridge artistic goals with the laws of reflection as prac-
ticed by traditional artists for centuries. With this system the digital
artist of today can specify constraints for reflection positions via
an intuitive user interface. If multiple constraints are given, the
system optimizes a Moving Least Squares cost function for each
pixel to generate the optimal interpolation field of edited reflection
directions. The system is easy to implement, works without pre-
processing, runs in real-time on modern graphics hardware, and is
independent of the underlying reflection rendering algorithm. It is
not limited to simple reflections and will also allow more general
specular light transport such as glossy reflections and refractions.
The applicability of the system was successfully verified by a user
study including feedback from professional 3D designers.
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