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Figure 1: Skeletons can be extracted automatically from examples for a variety of different models (like bipeds or quadrupeds shown here).
Each colour shows the area of influence for a particular bone of the skeleton.

Abstract

In this paper a method for estimating a rigid skeleton, including
skinning weights, skeleton connectivity, and joint positions, given
a sparse set of example poses is presented. In contrast to other
methods, we are able to simultaneously take examples of different
subjects into account, which improves the robustness of the estima-
tion. It is additionally possible to generate a skeleton that primar-
ily describes variations in body shape instead of pose. The shape
skeleton can then be combined with a regular pose varying skeleton.
That way pose and body shape can be controlled simultaneously but
separately. As this skeleton is technically still just a skinned rigid
skeleton, compatibility with major modelling packages and game
engines is retained. We further present an approach for synthesiz-
ing a suitable bind shape that additionally improves the accuracy of
the generated model.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Hierarchy and geometric transfor-
mations

Keywords: skeleton estimation, linear blend skinning

1 Introduction

Creating animatable models is an important step both in the de-
velopment of interactive games as well as in high-end movie pro-
ductions. Although a number of deformation techniques have been
developed in the last years, the most common method especially
for interactive graphics is skeleton based deformation. Here, every
vertex of a surface model is attached to the bones of a hierarchical
skeleton, which frequently mimics the physiological skeleton of the
modelled entity. By specifying transformations for every bone of
the skeleton an artist can deform the model and create animations.
The vertices on the surface move along with the bone they are at-
tached to. By allowing a vertex to be attached to more than one
bone and interpolating between the transformed vertex positions,
smooth transitions on the surface between bones can be achieved.
Despite its drawbacks pointed out e.g. by [Weber 2000] and an in-
creasing number of skeleton-less alternatives, linear blend skinning
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(LBS) also known as skeletal subspace deformation (SSD), single-
weight enveloping or just skinning still remains the most common
interpolation technique. It is available in all major 3D modelling
packages, used in many games, and applied in movie productions.
Unfortunately, the generation of skeleton hierarchy and skinning
weights (interpolation weights) is a labour intensive task, normally
performed by specialised artists (character riggers).

Consequently, several methods have been proposed that automati-
cally embed a skeleton into a given mesh. However, since the in-
formation that can be gathered given only one example is limited,
either a skeleton has to be provided by the user [Baran and Popović
2007], which is only adapted to the specific mesh, or a heuristic ap-
proach is used to segment the mesh into parts, which are assumed
to correspond to bones of the skeleton [Tschirren et al. 2002]. Fur-
thermore, it is very hard to compute smooth skinning weights given
only one example.

Here, we present a method that automates the process of skeleton
generation and skinning. Given a small number of examples in dif-
ferent poses, the proposed method generates a bone hierarchy, joint
positions, and skinning weights as used in linear blend skinning.
The examples can either be acquired from real objects by using a
3D scanner or can be created manually with a 3D modelling pack-
age.

Although [He et al. 2009] describe a method that allows transfer-
ring a skeleton from one entity to another, e.g. from a horse to a cat,
it is not possible to take examples from different entities into ac-
count during the construction of the skeleton. In contrast, with the
method we propose several entities, e.g. different scanned human
subjects, can be taken into account during optimisation because we
are only considering relative deformations. So, if one reference per
entity/subject is used, only pose dependent deformations are vis-
ible to the optimisation procedure. On the other hand, with the
proposed method, it is also possible to compute a skeleton, given
a set of different subjects in approximately the same pose. Using
this approach a classic skeleton can be automatically extracted that
describes shape changes rather than pose deformations. By merg-
ing these two skeletons a combined skeleton can be generated that
describes shape as well as pose deformations.

Another problem, that has, to the best of our knowledge, not been
addressed in the literature is the generation of a suitable bind
shape/dress pose, i.e. creation of the shape that is used as the ba-



sis for all deformations. In the ideal case, it does not matter which
pose the bind shape is in. In reality, however, it is important to
choose a pose that is easy to change for the modeller. Ideally the
pose is symmetric. It also makes sense to choose a pose that it is
as close as possible to the poses the model is expected to perform
because artefacts tend to be the more prominent the farther a de-
formation deviates from the bind shape. We describe a method for
first computing an initial bind shape and a means to further refine it,
given the final skeleton, skinning weights, and the input examples.

Contributions

• We estimate a skeleton that either describes shape variations
or variations in pose. The combination of the two, allows us
to control body shape and pose independently of each other,
while retaining compatibility with current modelling pack-
ages and game engines.

• In contrast to other methods we are able to combine the infor-
mation from example sets from different entities/subjects to
improve the stability of the method.

• Additionally, an approach for synthesising an optimised bind
shape is presented.

The paper is structured as follows. After presenting related work
(Sec. 2), the proposed method is introduced (Sec. 3), results are
presented (Sec. 4), and a summary is given in Section 5.

2 Related Work

Since the skeleton fitting and skinning process is labour intensive
and time consuming, a number of algorithms have been published
that address the problem. Since the issue is multilayered some pub-
lications address only part of the topic. In the following, we first
describe skeleton extraction using a single input image, skeleton
extraction from several examples, and then briefly introduce other
methods for describing pose and shape simultaneously.

Several approaches have been presented that estimate a skeleton,
given only a single input example. Since the information inherent
in a single input mesh is limited, the approaches are either not in-
terested in obtaining a skeleton suitable for animation or rely on
additional information such as an example skeleton that is adjusted
to fit to the data. In the former case the primary objective can be
shape matching [Sundar et al. 2003], segmentation [Au et al. 2008;
Katz and Tal 2003; Tschirren et al. 2002], or topology analysis [Bai
and Liu 2007], to name just a few.

Allowing animation of a single input mesh without skilled user in-
put is the clear aim of [Baran and Popović 2007]. They provide a
skeleton in a similar pose along with the input mesh to the algo-
rithm. This skeleton is then moved and morphed such that it fits
as nicely as possible into the provided mesh. By discretising the
medial surface using packed spheres the problem of locating the
joint centres is turned into a graph matching problem, which can be
solved efficiently. Skinning weights are computed by solving a dif-
ferential equation which is modelled in analogy to heat diffusion.
The results are convincing but the algorithm is unable to work with
non-standard articulation unless a special skeleton is provided.

In a recent contribution, [Xu et al. 2009] analyse 3D models which
consist of several parts. They are able to identify joints between
rigidly moving parts, and the degrees of freedom between the dif-
ferent components. Combining an inverse kinematics solver with a
grid-based deformation method results in a simple posing and de-
formation system. Unfortunately, the resulting articulation is not
compatible with commonly used animation systems.

An interesting approach for improving given skeleton based anima-
tions was presented by [Mohr and Gleicher 2003]. They propose
to add additional scaling transformations coupled to the rotation of
bones to counter the most common artefacts present in linear blend
skinning. Of course, by augmenting LBS their approach loses com-
patibility.

[James and Twigg 2005] were the first to introduce a fully auto-
matic method for generating both a skeleton, and the correspond-
ing skinning weights, given a sparse set of example meshes. They
used mean-shift clustering to detect near-rigid structures, and allow
their bones to perform any 3× 3 transformation including rotation,
scaling, and shearing, which is not compatible with most modelling
systems. Skinning weights are estimated using non-negative least
squares to solve for the best weights of every vertex.

Similarly, [Schaefer and Yuksel 2007] presented an approach for es-
timating a LBS compatible skeleton given a set of examples. They
also solve the problem of finding attachment regions for the bones
using a clustering method that merges clusters until a specified
number of clusters is reached. Skinning weights are then computed
by iteratively solving a linear equation system and after each iter-
ation enforcing non-negativity and truncating the number of bone
attachments for each vertex to four. Additionally, they use flood fill
segmentation to restrict the influence of a bone to a local region.
Joint positions are computed by exploiting knowledge about the
skeleton hierarchy. The skinning weights of two connected bones
normally overlap and thus provide information about the probable
location of the joint.

More recently, [de Aguiar et al. 2008] recommended to use spectral
clustering to segment the mesh into approximately rigidly moving
parts. The proposed cost function penalises vertices, whose dis-
tance changes within the example set. Additionally, connections
between vertices with large overall distances are penalised to force
them to be clustered into different bones. For building the hierar-
chy they consider only clusters with shared boundaries. If several
clusters are adjacent the largest boundary is taken to be the correct
one. Skinning is performed as proposed by [Baran and Popović
2007], which was developed to work for a single input model and
consequently ignores some of the available information.

Very recently, [He et al. 2009] proposed a method that is able to
work with example meshes with different triangulations. Their
approach is based on harmonic 1-forms, i.e. they compute Reeb
graphs of a harmonic function defined on the given examples. This
allows them to match examples independent of their resolutions and
triangulations. Joint locations are then determined by finding local
maxima in the change in average mean curvature of the graph and
refined by solving a linear equation system. Finally, skinning is
performed using the method proposed by [Xian et al. 2006].

In a different vein, a number of approaches have been presented
that model human shape and pose by various means. Possibly the
most prominent approach [Anguelov et al. 2005] performs principal
component analysis on the vertex positions of a number of exam-
ples in the rest pose. The result is then merged with a skeleton
based system for pose deformation. The method is successful but
fairly complex as two different representations are used for shape
and pose, the results of which have to be merged to generate final
output meshes. Based on this approach, parametric models, such as
[Seo and Magnenat-Thalmann 2003], are able to synthesise body
shapes by specifying a small set of semantically meaningful body
parameters. The model is computed by training morphing functions
for the desired parameters given a set of examples.

A survey of methods for generating animatable human shapes by
various means is given by [Magnenat-Thalmann et al. 2003]. Re-
cently, a fully differential model describing pose and shape has been



Figure 2: The overall optimisation pipeline is shown. Starting from a set of examples, different subjects in different poses, first an initial
segmentation is computed with spectral clustering. Then, by iteratively solving for skinning weights and rotations/translations final skinning
weights are generated. The transformations are used to compute the rigidity of potential connections between bones. The minimum spanning
tree on this rigidity matrix, is equivalent to the corresponding hierarchy. If both, a pose and a shape skeleton are available, a combined
skeleton can be used to control pose and shape of the mesh independently.

presented by [Hasler et al. 2009]. The representation is uniform in
pose and shape but involves solving two equation systems to recon-
struct one mesh. In summary, none of the systems relies solely on
rigid skeletons to perform shape and pose deformations and are not
directly compatible with current 3D modelling tools.

3 Approach

In this section the approach for estimating rigid skeletons given a
set of example meshes with identical mesh connectivity is detailed.

In the simplest case the optimisation procedure can be split into
five parts. Figure 2 visualises the involved steps. Firstly, a rough
segmentation of the mesh into parts belonging to different bones is
computed using spectral clustering (Sec. 3.1). Secondly, factorisa-
tion leads to initial skinning weights and estimates of the involved
bone rotations and offsets (Sec. 3.2). In the third step, the bone
hierarchy is computed by constructing the minimum spanning tree
using joint location stability as the penalty function (Sec. 3.3). The
joint locations are initialised to lie on the plane separating involved
bones. An optimisation scheme then improves skinning weights
and joint locations (Sec. 3.4). Finally, an optimal bind shape can be
synthesized by solving a linear equation system (Sec. 3.5).

If scans from several subjects are given and both pose and shape are
to be described by the skeleton, then, in order to preserve orthogo-
nality of pose and shape, initially two skeletons are generated, one
for shape and one for pose. These skeletons can be merged in a
final step (Sec. 3.6). This allows pose and shape of a mesh to be
controlled independently but with a joint representation.

3.1 Initialisation

One of our stated goals is to improve the skeleton estimation by
incorporating several different subjects into the computation. The
main idea to achieve this goal is that deformations between models
are considered rather than using a global criterion. So by grouping
the models according to subject, we can limit the observed deforma-
tions to pose dependent deformations while gathering information
from several subjects.

Initially, the bind shape for all subjects are computed using the rel-
ative rotation encoding proposed by [Hasler et al. 2009]. In prin-
ciple the encoding represents the orientation of triangles relative to
their neighbours and in-plane deformations relative to a cannon-
ical template shape. That way, interpolation of arbitrary shapes
produces reasonable results, provided the mesh connectivity is the
same. Thus, encoding all example models, computing the mean,
and decoding the results, leads to an average model that aims to
preserve both angles between neighbouring triangles and their in-
plane shapes as much as possible.

We further compute a rough initial segmentation of the mesh into
rigid parts. Starting from a given template, we can compute the
transformation Ti,e into example e for every vertex i. Vertices
that undergo similar transformations are moving rigidly. Consid-
ering only the rotational part Ri,e of Ti,e the angle between the
transformations for vertices i and l can be computed by converting
Ri,eR

>
l,e into a log-quaternion and computing its magnitude. This

is a measure for the non-rigidness of the vertices. Spectral clus-
tering (we use the self tuning variant [Zelnik-Manor and Perona
2005]) of the resulting rigidity matrix leads to an initial segmenta-
tion into a specified number of body parts.

3.2 Factorisation

Linear blend skinning makes the assumption that a transformed ver-
tex p′i can be represented by the original vertex pi, the rotations Rj

for each joint j, and scalar weights wj,i, such that

p′i =
X

j

wj,i(Rj · pi + vj), (1)

where vj is an additional offset that encodes the position of the joint
centre. In our context, a number of these equations can be set up for
each group of models belonging to one subject. Generally, it is pos-
sible to compare every model from a group with every other model
from the group. However, if more than a few example models are
considered, it becomes computationally intractable to consider all
combinations. Since, the primary objective is to optimise the defor-
mation starting from a single bind shape, it is sufficient to consider



the transformations from bind shape to examples but not the trans-
formations between different examples.

Since a first weight matrix W is available from the initial segmen-
tation, we can rearrange Equation (1) and solve for Rj and vj . Un-
fortunately, the resulting matrices Rj are not necessarily orthonor-
mal. This can be fixed by SVD based ortho-normalisation [Higham
1986] but the resulting rotations may deviate significantly from the
desired results. This situation can be improved by adding additional
equations of the form

pi =
X

j

wj,i(R
−1
j · p′i + v′j), (2)

where v′j are additional offset vectors but Rj remains the same
because R>

j = R−1
j . The resulting matrices are very close to

symmetric and the resulting ortho-normalisation is much closer to
a reasonable rotation. Enforcing true rotation matrices leads to a
non-linear cost function. Thus, the current result for Rj , vj , and
v′j can be optimised further with the Levenberg-Marquardt algo-
rithm [Marquardt 1963].

In a second step we consider the rotations fixed and optimise the
weight matrix. This can be done by solving a linear system e.g.
with a non-negative least squares solver. However, this approach
does not results in localised regions of influence of the bones. I.e. a
bone may influence spatially distant regions, which can lead to un-
sightly artefacts. It also leads to many nonzero weights. [Schaefer
and Yuksel 2007] propose to perform segmentation on the weight
map and keep only the most influential patch for each bone. Ad-
ditionally, they cut off all nonzero influences beyond the strongest
four. This approach is easy to implement and seems to work. Yet, it
may be desirable to have one joint control two limbs if they are al-
ways moving synchronously and the limit of four influences seems,
apart from efficiency reasons when implementing LBS on graphics
hardware, arbitrary.

In contrast, we opt to introduce an additional constraint into the
optimisation. Namely, the L1-norm of the weight matrix, which
induces sparseness, is minimised simultaneously. This optimisa-
tion target is obviously in conflict with the constraint

P
j wj,i = 1.

However, as the sum of weights constraint is minimised in the least
squares sense while sparsity is enforced with the L1-norm, after
renormalisation, the result is still more sparse than a non-negative
least squares solution. We use the implementation provided by
[Zhang 2009]. After about 10 iterations of solving for rotations and
weights the method converges and we can continue by computing a
hierarchy of bones.

3.3 Hierarchy Generation

The bone rotations and translations computed in the previous step
cannot be transformed directly into a skeleton hierarchy because
the offset vectors vj are not necessarily consistent with the intrinsic
joint hierarchy. This can easily be seen if we consider the following:
The position of point p1 after rotating it by R0 around point p0 is
determined by

p′1 = R0 · (p1 − p0) + p0 = R0p1 + p0 −R0p1| {z }
v0

. (3)

The optimisation, performed in Section 3.2, employs Equation (1),
and allows vj to be chosen freely. This additional degree of free-
dom effectively allows the optimisation to freely move the joint
centres for every example. However, due to the underlying assump-
tion that the 3D models consist mostly of rigidly moving body parts,
we can nonetheless use the estimates to compute connectivity and

Figure 3: Comparison of the initial bind shape (red) and the im-
proved bind shape (green) for a female and male example (with
detail magnification)

rough positions of the true joint centres. The basic insight that,
given two connected bones j and k, the connecting joint centre jj,k

is invariant with respect to the child bone’s rotation, leads to

Rjjj,k + vj = Rkjj,k + vk. (4)

Thus, given a number of observations Rn,vn, the joint centre can
be determined by solving the overdetermined system of equations

(Rj,n −Rk,n)jj,k = vk,n − vj,n (5)

for jj,k. Determining the residual error leads to a measure of the
connectedness of two bones [Schaefer and Yuksel 2007]. Comput-
ing the full connectedness graph and finding the minimum spanning
tree [Kruskal 1956] leads to an optimal skeleton hierarchy.

Determining the root node is mostly a question of ease of use for a
human modeller. For optimisation purposes it is not really relevant.
A human, however, expects the root to be lie near the perceived cen-
tre of the model. We accordingly choose the graph centre [Harary
1994] as the root node.

3.4 Joint Position Estimation

The main challenge when determining joint centres lies with hinge
joints because the joint centre of a hinge joint can lie anywhere on
the hinge axis. Of course in real world examples with measure-
ment inaccuracies and non-rigid deformation this case cannot be
detected by Eigenanalysis of the rotation matrices, which would be
a good indicator in the ideal case. The joint centres computed with
Equation (5), however, exhibit the described artefact. The points
lie anywhere on the approximate hinge axis. Again, the skeletons
are fully functional but the human modeller expects the bones to lie
within the surface of the model. So we initialise the joint centres
by placing them on the interface between the two involved bones
using the equation provided by [Schaefer and Yuksel 2007]

j =

P
i min(wi,1, wi,2)piP

i min(wi,1, wi,2)
, (6)

where pi are all vertices with nonzeros weights for the two bones.
Afterwards, the positions j are refined with a Levenberg-Marquardt
gradient descent scheme, optimising Equation (1), which can be
expressed as a non-linear function of j. It also proved beneficial
to repeat the skinning weight optimisation from Section 3.2 after
updating the joint positions.

3.5 Bind Shape Synthesis

In a final step, the bind shape of the model can be optimised. So
far, all existing approaches have used an arbitrary example as the



bind shape. This model is typically chosen manually. In contrast,
in our method, the initial bind shape is the average model generated
using the relative rotation encoding (cf. Section 3.1). At this stage,
all unknowns of Equation 1 assuming fixed bind shape pi and ex-
amples p′i are determined. But the result has been computed given
in a least squares sense. Thus, it is possible to improve the solution
by optimising the bind shape. Rearranging and solving the linear
system for pi results in a bind shape that reduces the reprojection
error of the training examples (cf. Figure 3).

3.6 Combining Shape and Pose

The above procedure describes a method for generating a skeleton
given a set of example models. With it, we can create skeletons
for changing either pose or shape. Yet, it is not feasible to directly
create a combined model of pose and shape that separates the con-
tributions of shape and pose. This would be of great importance
for easy manual animation of the resulting skeleton. In this section
an approach is introduced for generating such a combined skeleton
starting from two skeletons, one describing pose and one for shape.

Firstly, a shape deformation skeleton is computed, using models
of different persons each scanned in a similar rest pose using the
approach described above. The generated skeleton is then used to
recreate the subjects in their rest poses. Secondly, these models de-
rived with the shape skeleton serve as bind shapes for the second
skeleton, which describes pose variations. Since the two skeletons
are coupled via the bind poses, a combined skeleton can be created
by performing the two transformations one after the other. So, sim-
ilar to Equation (1), the combined transformation can be expressed
as

p′i =

 X
j

ws
j,i(R

s
j + vs

j )

!
·

 X
j

wp
j,i(R

p
j + vp

j )

!
· pi. (7)

In this formulation every shape bone influences every pose bone.
This is undesirable because the resulting graph structure is highly
connected, whereas common graphics packages can only handle
tree structures. Consequently, it is necessary to simplify the graph
to a tree. Of course, this is an approximation to the real structure
but since the areas of influence of the bones are highly localised,
most bones don’t overlap significantly. The corresponding factors
can consequently be dropped. Since the weight matrices of the two
skeletons describe the areas of influence, it is clear that the multipli-
cation of the two, results in a merit function that clusters bones by
their area of influence. By concatenating the two weight functions
Wc = [Ws,Wp], a general merit matrix M can be computed.

M = W>
c Wc (8)

Similar to Section 3.3, the minimum spanning tree leads to a rea-
sonable tree structure fitted into the graph. In the given problem,
however, additional constraints have to be respected. Namely, it is
essential that the hierarchy of the original skeletons is preserved. A
joint a that is a child (direct or indirect) of joint b in the a shape
skeleton has to remain a child of joint b in the combined hierar-
chy. It is admissible, however, to introduce additional nodes be-
tween a and b as long as they are from the pose skeleton. The
reverse delete algorithm for computing the minimum spanning tree
[Kruskal 1956] can be modified to incorporate this type of con-
straint. Unfortunately, after the modified algorithm terminates,
some small cycles can remain. These cycles are dissolved by con-
necting the involved nodes fully and rerunning the above modified
reverse delete algorithm. This time, however, only the pose hier-
archy is enforced. Since these cycles normally appear in the chest
region, near the root of the tree, violations of the shape hierarchy
which primarily performs translations and only little rotation are not

Figure 5: Transforming a bind shape (left) to another shape us-
ing a shape skeleton that allows rotation and scale (middle) in
comparison with a shape skeleton that allows rotation and trans-
lation (right).

vital. In the resulting skeletons pose and shape bones frequently al-
ternate because the constraints allow only insertion of nodes from
the respective other skeleton (cf. Fig. 4).

3.7 Translation vs. Scaling

Since the articulated motion of humans can be described well by
distinct rigid body motions with blending, skeleton based systems
describing rotation and translation for every bone are very suc-
cessful. Shape changes on the other hand, intuitively, can be ex-
plained more easily by a hierarchy of scale and rotation transfor-
mations. Thus, for shape describing skeletons we incorporate addi-
tional terms into Equation (1)

p′i =
X

j

wj,i(RjSj · pi + vj), (9)

where Sj is a diagonal matrix and vj does not encode any transla-
tion beyond the initial offset of a joint relative to its parent. The op-
timisation strategy described above has to be adjusted accordingly
but the necessary changes are straight-forward. Figure 5 shows the
difference in quality that can be achieved when computing a shape
skeleton with translation or scaling.

A significant disadvantage of incorporating scale into a skeleton hi-
erarchy is that it invariably introduces shearing in dependent nodes
during articulation. This effect is not substantial if all examples are
in approximately the same pose but can introduce serious artefacts
during pose animation. The artefact can be avoided by performing
the scaling in the untransformed coordinate system of the bone, i.e.
the transformation Ta of bone a, which is a child of bone b can be
written as

T1 = RaRbSaR
>
b , (10)

where R and S denote rotation and scale matrices, respectively.
Unfortunately, this non-standard approach is not generally sup-
ported. Since the difference between the shape described by trans-
lation and that described by scaling is not significant, as shown in
Figure 5, we instead opt to allow translation instead of scaling dur-
ing shape skeleton construction.

4 Results

In this section experiments are described that show the effective-
ness of the approach presented in the previous section. We start by
showing results exploring the classic pipeline for estimating a pose
dependent skeleton (the top branch in Figure 2). Then, new poses
of the combined shape and pose model are shown. Animated results
are also available in the accompanying video.



Figure 4: A shape skeleton a) and pose skeleton for different subjects that were estimated simultaneously b) are merged into a combined pose
and shape skeleton c). In the combined skeleton the hierarchy of the pose skeleton is enforced. Since shape skeletons are not as sensitive to
changes in the hierarchy, the shape hierarchy is allowed to be broken if no overall consistent tree can be found.

As described above, the bind shape is first approximated by the
rotation invariant mean of the examples and refined by solving a
linear equation system as the last step of the pipeline. A comparison
of the two is shown in Figure 3. Although the differences are subtle,
slightly more detail is visible in the refined shape and the numerical
error is significantly (for the horse on average 11%) smaller.

Final results for the three single entity sets are shown in Figures 7,
8, and 9. They show the refined bind shapes, the input meshes used
during optimisation, the estimated skeletons, skinning weights, and
a few poses not present in the input sets. Of course, the input se-
quences used for these three models were generated with similar
methods as the technology underlying our approach. It may conse-
quently be unsurprising that it is possible to achieve accurate results
with it. The human dataset, however, was obtained by registering
3D scans of real persons to a template mesh. So the assumptions
we make (all deformations are based on a rigid skeleton) are only
approximately true. The results we obtain are, nonetheless, as good
as for the synthetic sequences.

Table 1 summarises the residual root mean squared errors (RMSE)
for recreating the input examples as a function of the number of
bones for the male and female models, as well as the horse and the
cat. As shown, the accuracy is comparable to other recent meth-
ods [Schaefer and Yuksel 2007; de Aguiar et al. 2008]. It is also
interesting to note that, despite the gross simplification introduced
by merging the skeletons (cf. Sec. 3.6), the error for the combined
model is not significantly higher than that of the solely shape or
pose dependent models.

Since the final model does not use any non-standard techniques, it is
possible to load the resulting skinned mesh into common modelling
packages. Figure 6 shows the horse model posed in 3D Studio Max.

For symmetric shapes, a user might expect the algorithm to find a
symmetric skeleton. Yet, the only symmetrisation we currently per-
form is, that for the humans, we add mirrored versions of the ex-
amples to the input set. The resulting pose skeletons are frequently
fairly symmetric but the shape skeletons are not. This is probably
related to the fact that, since shape skeletons are mostly translation
controlled, the exact hierarchy of the bones is not as important as for
pose skeletons. The undesired translation of a parent node can then
be compensated for by translating in the opposite direction, which
is not possible for rotations. Nonetheless, it would be possible and
easy to enforce symmetric skinning weights, and joint positions for
either type of skeleton.

Figure 10 shows two shape skeletons, one describing female body
shape and one for males and three pose skeletons for different sub-
jects. Each is shown in two significantly different poses/shapes.
Morphing shapes and poses is also shown in the video. Exemplary

model S N RMSE (%)
# Bones 10 11 12 13 14
pose (men) 4 80 0.70 0.62 0.61 0.59 0.57
pose (women) 6 120 0.66 0.61 0.60 0.61 0.56
# Bones 10 15 20 25 30
shape (men) 59 118 0.48 0.41 0.37 0.34 0.32
shape (women) 55 110 0.54 0.45 0.41 0.37 0.35
# Bones 34 39 44
combined (men) 59 190 1.12 0.88 0.96
combined (women) 55 218 0.88 0.92
# Bones 10 15 20 25
horse 1 12 0.90 0.56 0.51 0.38
# Bones 12 13 14 15
cat 1 8 1.45 1.20 1.16 1.02

Table 1: The residual RMSE normalised by the bounding volume
diagonal is shown as a function of the number of joints. S denotes
the number of subjects and N the number of examples. The shape
model and the combined model allow rotation and translation of
the bones only.

results of the merge of pose and shape skeletons are shown in Fig-
ure 11. Here a woman walks and simultaneously changes body
shape.

The presented approach is limited in that it can only estimate bones
if the relative motion is non-zero in at least one example. If, for
example, in a set of meshes the arms of a subject move in parallel,
it is impossible for the algorithm to determine that two bones are
required. A user may, on the other hand, expect that the prongs of
a forklift are controlled by a single bone. Distinguishing these two
cases is, in the general case, difficult. An additional limitation of
the method is that when combining shape and pose skeletons, the
correlations between pose and shape are lost. This effect cannot be
avoided unless the commitment to a strict skeleton hierarchy with
LBS is dropped.

Despite these limitations, a powerful method for converting a sparse
set of examples into a fully rigged kinematic skeleton, has been
presented.

5 Summary

We have presented a method for estimating a skeleton, including
the hierarchy, joint positions, and skinning weights, given a sparse
number of examples, that span the desired space of pose and shape.
Unlike other approaches, the presented technique relies solely on
rigid skeletons to model pose and shape variations. By combining a



Figure 6: The final model is compatible with current 3D modelling
tools and game engines. Here, the horse is posed in 3D Studio Max.

Figure 7: Top: input examples, Middle (left to right): bind shape,
segmentation, extracted bone skeleton, Bottom: new poses gener-
ated with the extracted skeleton.

Figure 8: Top: input examples, Middle (left to right): bind shape,
segmentation, extracted bone skeleton, Bottom: new poses gener-
ated with the extracted skeleton.

Figure 9: Top: input examples, Middle (left to right): bind shape,
segmentation, extracted bone skeleton, Bottom: new poses gener-
ated with the extracted skeleton.

Figure 10: a) changing the shape of the human model with the
extracted shape skeleton, b) changing the pose of the human model
with the extracted pose skeleton.

Figure 11: The extracted combined shape and pose skeleton allows
independent control of shape and pose. In this example a walking
motion is performed while changing the body shape.



pose skeleton and a shape skeleton, it is possible to control the two
independently. Another advantage of the presented approach is that
it is possible to combine information gathered from several different
persons to more robustly train individual skeletons for each of them.
Additionally, an approach for computing a bind shape that reduces
artefacts such as the candy wrapper effect is presented. The method
is evaluated on several datasets including one challenging set of
registered 3D scans of over 100 persons in various poses.
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